Getting Started Code for LNDST Challenge on AIcrowd¶
Author : Sanjay Pokkali and Naveen Narayanan¶
Make sure you have chosen a GPU runtime¶
!nvidia-smi
Import necessary packages¶
import pandas as pd
import numpy as np
import os
import cv2
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset,DataLoader
from tqdm import tqdm_notebook as tqdm
import matplotlib.pyplot as plt
%matplotlib inline
Download the files¶
These include the train images, train maps, and test images
!wget https://datasets.aicrowd.com/default/aicrowd-practice-challenges/public/lndst/v0.1/train_images.zip
!wget https://datasets.aicrowd.com/default/aicrowd-practice-challenges/public/lndst/v0.1/train_gt.zip
!wget https://datasets.aicrowd.com/default/aicrowd-practice-challenges/public/lndst/v0.1/test_images.zip
!rm -rf FinalData
!mkdir FinalData
!unzip train_images -d FinalData/
!unzip train_gt -d FinalData/
!unzip test_images -d FinalData/
#UNET NETWORK
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
model = UNet(3,1).cuda()
learningRate = 0.001
optimizer = torch.optim.RMSprop(model.parameters(), lr=learningRate, weight_decay=1e-8, momentum=0.9)
criterion = nn.BCEWithLogitsLoss()
Loading Data¶
root='FinalData/'
images_path=root+"train_images/"
groundTruth_path=root+"train_gt/"
saving_bestModel_path=root+"unet_1.pt"
len(os.listdir(root+"train_gt/"))
We split the train dataset into train and validation sets so we can see how well our model is functioning¶
class LandsatDataset(Dataset):
def __init__(self,training="True"):
water_arr = os.listdir(images_path)
training_images_count = 800
if(training=="True"):
print("training")
# how many images do you want to have in training
self.arr = water_arr[:training_images_count]
else:
print("Validation")
self.arr = water_arr[training_images_count:]
def __len__(self):
return len(self.arr)
def __getitem__(self,idx):
image_name = self.arr[idx]
input_path = images_path + image_name
gt_path = groundTruth_path + image_name[:-3] + "png"
gt_img = cv2.imread(gt_path,cv2.COLOR_BGR2GRAY)
gt_img = gt_img.reshape((1,400,400))
input_img= cv2.imread(input_path)
input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB)
input_img = input_img.reshape((3,400,400))
return input_img,gt_img
X = LandsatDataset("True")
Y = LandsatDataset("False")
X.__len__()
Creating the DataLoaders for Pytorch¶
batch_size=4
train_loader = torch.utils.data.DataLoader(X,batch_size=batch_size,shuffle=True)
val_loader = torch.utils.data.DataLoader(Y,batch_size=batch_size,shuffle=True)
First training iteration¶
epochs = 1
best_loss = 1000
for epoch in range(epochs):
model.train()
print('epochs {}/{} '.format(epoch+1,epochs))
running_loss = 0.0
running_loss_v = 0.0
for idx,(inputs,labels) in tqdm(enumerate(train_loader),total=len(train_loader)):
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,labels)
running_loss += loss
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for idx,(inputs_v,labels_v) in tqdm(enumerate(val_loader),total=len(val_loader)):
inputs_v = inputs_v.type(torch.FloatTensor)
labels_v = labels_v.type(torch.FloatTensor)
inputs_v = inputs_v.cuda()
labels_v = labels_v.cuda()
outputs_v= model(inputs_v)
loss_v = criterion(outputs_v,labels_v)
running_loss_v += loss_v
if (running_loss_v/len(val_loader)) < best_loss:
best_loss = running_loss_v/len(val_loader)
out = torch.save({
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_loss,
}, f=saving_bestModel_path)
print('loss : {:.4f} val_loss : {:.4f}'.format((running_loss/len(train_loader)),(running_loss_v/len(val_loader))))
Saving weights after first training loop¶
torch.save(model.state_dict(),saving_bestModel_path)
Second Training Iteration¶
saving_bestModel_path = root+"unet_1.pt"
epochs = 1
best_loss = 1000
for epoch in range(epochs):
model.train()
print('epochs {}/{} '.format(epoch+1,epochs))
running_loss = 0.0
running_loss_v = 0.0
for idx,(inputs,labels) in tqdm(enumerate(train_loader),total=len(train_loader)):
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,labels)
running_loss += loss
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for idx,(inputs_v,labels_v) in tqdm(enumerate(val_loader),total=len(val_loader)):
inputs_v = inputs_v.type(torch.FloatTensor)
labels_v = labels_v.type(torch.FloatTensor)
inputs_v = inputs_v.cuda()
labels_v = labels_v.cuda()
outputs_v= model(inputs_v)
loss_v = criterion(outputs_v,labels_v)
running_loss_v += loss_v
if (running_loss_v/len(val_loader)) < best_loss:
best_loss = running_loss_v/len(val_loader)
out = torch.save({
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_loss,
}, f=saving_bestModel_path)
print('loss : {:.4f} val_loss : {:.4f}'.format((running_loss/len(train_loader)),(running_loss_v/len(val_loader))))
Run Prediction¶
Moment of truth. Lets run prediction on the test set and finally generate our submission file!
Here we load our best model, which is called unet_1. You will have to change it accordingly
checkpoint = torch.load(root+"unet_1.pt")
model = UNet(3,1).cuda()
model.load_state_dict=checkpoint['model']
checkpoint['epoch']
Run Prediction¶
Lets load a single image and see how well our model is performing!¶
test_data_path = root+"test_images/"
# If each pixel value is above 0.5, we mark it as water, else mark it as land
output_mask_path = "FinalData/masks/"
!rm -rf FinalData/masks
!mkdir FinalData/masks
threshold = 0.5
for j in os.listdir(test_data_path):
test_image_path = test_data_path + j
print(test_image_path)
img_plot = cv2.imread(test_image_path)
img_plot = cv2.cvtColor(img_plot, cv2.COLOR_BGR2RGB)
img = img_plot.reshape((1,3,400,400))
img = torch.tensor(img).float()
model.eval()
with torch.no_grad():
img = img.cuda()
output = model(img)
probs = torch.sigmoid(output)
# print("probs output ",probs.shape)
probs = probs.squeeze(0)
# print("probs after squeeze",probs.shape)
probs = probs.reshape((400,400)).detach().cpu().numpy()
probs = probs.flatten()
binary_probs = []
for i in probs:
if (i>threshold):
binary_probs.append(1)
else:
binary_probs.append(0)
binary_probs = np.asarray(binary_probs)
# print("binary_probs ",binary_probs.shape)
output_mask = binary_probs.reshape((400,400))
# print("output_mask shape ",output_mask.shape)
cv2.imwrite(output_mask_path+j[:-3]+'png',output_mask)
#Models output mask
plt.imshow(output_mask)
#input image
plt.imshow(img_plot)
Running inference on the full dataset¶
#Preparing submission.npy file
#output_mask_path is the path which leads to the masks that you have generated for all the images (Kindly iterate through the previous cell and generate masks for all the images)
#make sure that your flattened numpy array consists of image pixels from image_0 to image_477
submission_file_path = root+"submission.npy"
main_array = []
for i in range(len(os.listdir(output_mask_path))):
image_name = "image_" + str(i) + ".jpg"
gt_mask = output_mask_path + image_name[:-3] + "png"
print(gt_mask)
gt_img = cv2.imread(gt_mask,cv2.COLOR_BGR2GRAY)
flattened =gt_img.flatten()
main_array.append(flattened)
main_array = np.asarray(main_array)
print(main_array.shape)
main_array_flat = np.reshape(main_array,(-1))
print(main_array_flat.shape)
print(type(main_array_flat))
with open(submission_file_path, 'wb') as f:
np.save(f,main_array_flat)
from google.colab import files
files.download(root+'submission.npy')
Go make your first submission! 🥳¶