Baseline - Power

Contribute Download Execute In Colab

Baseline for POWER Educational Challenge on AIcrowd

Author : Faizan Farooq Khan

Download Necessary Packages

In [ ]:
import sys
!pip install numpy
!pip install pandas
!pip install scikit-learn

Download Data

The first step is to download out train test data. We will be training a model on the train data and make predictions on test data. We submit our predictions

In [ ]:
#Donwload the datasets
!rm -rf data
!mkdir data
!wget https://s3.eu-central-1.wasabisys.com/aicrowd-practice-challenges/public/power/v0.1/train.csv
!wget https://s3.eu-central-1.wasabisys.com/aicrowd-practice-challenges/public/power/v0.1/test.csv
!mv train.csv  data/train.csv
!mv test.csv data/test.csv

Import packages

In [ ]:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.metrics import mean_absolute_error,mean_squared_error

Load Data

  • We use pandas 🐼 library to load our data.
  • Pandas loads the data into dataframes and facilitates us to analyse the data.
  • Learn more about it here 🤓
In [ ]:
all_data_path = "data/train.csv" #path where data is stored
In [ ]:
all_data = pd.read_csv(all_data_path) #load data in dataframe using pandas

Visualize the data

In [ ]:
all_data.head()
In [ ]:
all_data = all_data.drop(['Date'],axis=1)
all_data = all_data.drop(['Time'],axis=1)
In [ ]:
all_data.head()

We can see the dataset contains 9 columns,where columns 1 and 2 are not of use for the regression, so we drop them and the columns 3-8 denotes the different type of information about the power consumed and the last column tells the reading of Sub_metering_3.

Split Data into Train and Validation 🔪

  • The next step is to think of a way to test how well our model is performing. we cannot use the test data given as it does not contain the data labels for us to verify.
  • The workaround this is to split the given training data into training and validation. Typically validation sets give us an idea of how our model will perform on unforeseen data. it is like holding back a chunk of data while training our model and then using it to for the purpose of testing. it is a standard way to fine-tune hyperparameters in a model.
  • There are multiple ways to split a dataset into validation and training sets. following are two popular ways to go about it, k-fold, leave one out. 🧐
  • Validation sets are also used to avoid your model from overfitting on the train dataset.
In [ ]:
X_train, X_val= train_test_split(all_data, test_size=0.2, random_state=42)
  • We have decided to split the data with 20 % as validation and 80 % as training.
  • To learn more about the train_test_split function click here. 🧐
  • This is of course the simplest way to validate your model by simply taking a random chunk of the train set and setting it aside solely for the purpose of testing our train model on unseen data. as mentioned in the previous block, you can experiment 🔬 with and choose more sophisticated techniques and make your model better.
  • Now, since we have our data splitted into train and validation sets, we need to get the corresponding labels separated from the data.
  • with this step we are all set move to the next step with a prepared dataset.
In [ ]:
#change the column number according the column which contains the label
In [ ]:
X_train,y_train = X_train.iloc[:,:-1],X_train.iloc[:,-1]
X_val,y_val = X_val.iloc[:,:-1],X_val.iloc[:,-1]

TRAINING PHASE 🏋️

Define the Model

  • We have fixed our data and now we are ready to train our model.

  • There are a ton of regressors to choose from some being Logistic Regression, SVM, Random Forests, Decision Trees, etc.🧐

  • Remember that there are no hard-laid rules here. you can mix and match regressors, it is advisable to read up on the numerous techniques and choose the best fit for your solution , experimentation is the key.

  • A good model does not depend solely on the classifier but also on the features you choose. So make sure to analyse and understand your data well and move forward with a clear view of the problem at hand. you can gain important insight from here.🧐

In [ ]:
regressor = LinearRegression()
  • To start you off, We have used a basic Linear Regression here.
  • But you can tune parameters and increase the performance. To see the list of parameters visit here.
  • Do keep in mind there exist sophisticated techniques for everything, the key as quoted earlier is to search them and experiment to fit your implementation.

To read more about other sklearn refressors visit here 🧐. Try and use other classifiers to see how the performance of your model changes. Try using Logistic Regression or MLP and compare how the performance changes.

Train the model

In [ ]:
regressor.fit(X_train, y_train)

Got a warning! Dont worry, its just beacuse the number of iteration is very less(defined in the classifier in the above cell).Increase the number of iterations and see if the warning vanishes and also see how the performance changes.Do remember increasing iterations also increases the running time.( Hint: max_iter=500)

Validation Phase 🤔

Wonder how well your model learned! Lets check it.

Predict on Validation

Now we predict our trained classifier on the validation set and evaluate our model

In [ ]:
y_pred = regressor.predict(X_val)

Evaluate the Performance

  • We have used basic metrics to quantify the performance of our model.
  • This is a crucial step, you should reason out the metrics and take hints to improve aspects of your model.
  • Do read up on the meaning and use of different metrics. there exist more metrics and measures, you should learn to use them correctly with respect to the solution,dataset and other factors.
  • Mean Absolute Error and Root Mean Square Error are the metrics for this challenge
In [ ]:
mse = mean_squared_error(y_val,y_pred)
mae = mean_absolute_error(y_val,y_pred)
In [ ]:
print("MSE of the model is :" ,mse)
print("MAE of the model is :" ,mae)

Testing Phase 😅

We are almost done. We trained and validated on the training data. Now its the time to predict on test set and make a submission.

Load Test Set

Load the test data now

In [ ]:
final_test_path = "data/test.csv"
final_test = pd.read_csv(final_test_path)
In [ ]:
final_test = final_test.drop(['Date'],axis=1)
final_test = final_test.drop(['Time'],axis=1)

Predict Test Set

Time for the moment of truth! Predict on test set and time to make the submission.

In [ ]:
submission = regressor.predict(final_test)

Save the prediction to csv

In [ ]:
#change the header according to the submission guidelines
In [ ]:
submission = pd.DataFrame(submission)
submission.to_csv('submission.csv',header=['sub_metering_3'],index=False)

🚧 Note :

  • Do take a look at the submission format.
  • The submission file should contain a header.
  • Follow all submission guidelines strictly to avoid inconvenience.

To download the generated csv in colab run the below command

In [ ]:
try:
    from google.colab import files
    files.download('submission.csv')
except:
    print('only in colab')

Well Done! 👍 We are all set to make a submission and see your name on leaderborad. Let navigate to challenge page and make one.